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1. Introduction

In this paper we continue the study of noncommutative and matrix gauge theories [1 – 3]

that can be used as effective non-relativistic theories1 [4, 5] of the fractional Hall effect [6].

The original Susskind proposal was based on the noncommutative Chern-Simons theory [7]:

it developed in the Polychronakos Chern-Simons matrix model [8], that was analysed by

several authors [9 – 16]. This model is a U(N) gauge theory in one dimension (i.e. time) with

Chern-Simons kinetic term; it involves two Hermitean matrix coordinates, X1(t),X2(t),

that are noncommuting, [X1,X2] = iθI, where θ is a constant “background charge” and

I is the identity matrix. In the semiclassical limit [7], the matrix model describes two-

dimensional incompressible fluids in strong magnetic field B with Laughlin’s values of the

filling fraction, ν = 1/(k + 1), where k = Bθ is integer quantized [17].

1We refer to [15] for an introduction to noncommutative theories of the quantum Hall effect.
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At the full quantum level, some problems were found in matching the matrix model

to the physics of the fractional Hall effect: one point was that the theory reduced to the

eigenvalues, λa, a = 1, . . . , N , of X = X1 + iX2, does not really describe electrons in the

lowest Landau level with coordinates λa; owing to matrix noncommutativity, the Laughlin

wave function is deformed at short distances [11, 15]. Another issue was that this model

cannot easily describe the general Hall states with Jain’s filling fractions: ν = m/(mk±1),

m = 2, 3, . . . [18].

In our earlier paper [19], we showed that these problems can be overcome by upgrading

the Chern-Simons model to the Maxwell-Chern-Simons matrix theory. This includes an

additional kinetic term quadratic in time derivatives and the potential, V = −gTr [X1,X2]
2,

with the coupling g ≥ 0 that controls matrix noncommutativity. All terms in the action are

determined by the gauge principle because they can be obtained by dimensional reduction

of Maxwell-Chern-Simons gauge theory, as discussed in the literature of D0-branes in string

theory [3].

The Maxwell-Chern-Simons matrix theory reduces to the earlier Chern-Simons model

for large values of B (with finite g). However, in the different g = ∞ limit (with finite

B), corresponding to [X1,X2] = 0, it does provide a sensible physical description of the

fractional Hall effect: after reduction to eigenvalues, one finds electrons in Landau levels

interacting with a two-dimensional potential of Calogero type, 1/|λa − λb|2 (see section

2.2). For general B <∞, the additional coupling g in the theory allows one to interpolate

between matrix (g = 0) and electron (g = ∞) dynamics.

Furthermore, the theory is exactly solvable at g = 0 [19]: it was found to describe

a matrix extension of the Landau levels, where the gauge-invariant many-body states are

given by matrix generalizations of Slater determinants. Although the degeneracy of matrix

states grows exponentially with energy, it was possible to control it by introducing suitable

projections in the theory. We showed that the constraint (Aab)
m ≈ 0, ∀a, b, projects

the theory to the “lowest m matrix Landau levels”, with m = 1, 2, . . . ; the m-th reduced

theory naturally possesses non-degenerate homogeneous ground states with filling fractions

of the Jain series, ν = m/(mk + 1) [19] (see section 2). Indeed, the solutions of the

gauge invariance conditions and of the constraint Am ≈ 0 give raise to a rather surprising

structure of ground states that corresponds to the Jain composite-fermion construction of

ansatz wave functions [18].

These g = 0 states exactly match the phenomenological Jain wave functions under

matrix diagonalization, that is formally achieved at g = ∞. Therefore, we conjectured

that these matrix ground states have smooth deformations for g > 0 into the physical

g = ∞ states, namely that no phase transitions are found for 0 < g <∞ when the system

is at the specific densities [19].

A number of problems remained to be further investigated:

• Understand the matrix Jain states, e.g. compute their densities and observables quan-

tities.

• Understand the projections (Aab)
m ≈ 0 in more physical terms.
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• Study the phase diagram of the theory for 0 < g <∞ at the relevant densities.

In the present paper, after reminding earlier results [19] (section 2), we find the gauge

invariant form of the projection Am ≈ 0 and its semiclassical physical meaning in terms of

single-particle occupancy (section 3). Next, we study the matrix Jain states in the semi-

classical approximation, by analytically solving the classical equations of motion, further

constrained by the Gauss law and the semiclassical version of the Am ≈ 0 condition (sec-

tion 4). The ground states are found to be two-step droplets of incompressible fluid with

piecewise constant density; this is the same density shape of the phenomenological Jain

states before projection to the lowest Landau level [18] (where the density of incompressible

fluids becomes strictly constant).

The fact that the matrix Jain states at g = 0 already have the expected droplet density

of physical g = ∞ states, supports our earlier claim that these ground states could remain

stable while varying 0 < g < ∞ [19]. Other ground states corresponding to generalized

Jain constructions with different filling fraction, although possible in the g = 0 theory,

are found not to possess piecewise constant density. We argue that the modulated density

shape is a signal of ground-state instability at finite g values, since the corresponding

phenomenological Jain states (g = ∞) are known to be unstable [18]. We complete our

study of semiclassical solutions by describing the quasi-holes excitations above the matrix

Jain states. Finally, in the conclusion we briefly discuss the ways to study the Maxwell-

Chern-Simons matrix theory for g > 0.

2. Jain states in Maxwell-Chern-Simons matrix gauge theory

2.1 Lagrangian and hamiltonian

In this section we recall the matrix theory of quantum Hall states proposed in [19] and the

derivation of ground states that are matrix analogs of the Jain composite-fermion states.

The theory involves three time-dependent N ×N Hermitean matrices, Xi(t), i = 1, 2 and

A0(t), and an auxiliary complex vector ψ(t). The Lagrangian contains a Maxwell-Chern-

Simons kinetic term, a uniform “charge background” θ and the ψ “boundary term” of

ref. [8]:

S =

∫

dtTr

[

m

2
(DtXi)

2 +
B

2
εijXiDtXj +

g

2
[X1,X2]

2 + BθA0

]

− i

∫

ψ†Dtψ. (2.1)

The covariant derivatives are: DtXi = Ẋi − i [A0,Xi] and Dtψ = ψ̇ − iA0ψ. Under the

U(N) gauge transformations: Xi → UXiU
†, A0 → U (A0 − id/dt)U †, and ψ → Uψ, the

action changes by a total derivative, such that invariance under large gauge transforma-

tions requires the quantization, Bθ = k ∈ Z [17]. Hereafter we set m = 1 and measure

dimensionful constants accordingly.

The variation of S w.r.t. the non-dynamical field A0 gives the Gauss-law constraint;

its expression in term of coordinates Xi and conjugate momenta Πi, i = 1, 2, reads:

G ≈ 0, G = i [X1,Π1] + i [X2,Π2] − BθI + ψ ⊗ ψ†. (2.2)
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The trace of G fixes the norm of the auxiliary vector ψ,

TrG = 0 −→ ‖ψ‖2 = BθN = kN. (2.3)

We note that ψ has trivial dynamics, ψ(t) = ψ(0) = const., and it is necessary to represent

the Gauss law on finite-dimensional matrices that have traceless commutators [8]. In a

gauge in which all ψ components vanish but the last one, the term
(

kI − ψ ⊗ ψ†
)

in (2.2)

becomes the “traceless identity”, kIN , IN = diag(1, · · · , 1, 1 −N).

In gauge-invariant quantization, all 2N2 matrix degrees of freedom Xi
ab are quantized

and the Gauss law is imposed on states: G generates U(N) gauge transformations of Xi

and ψ, and G = 0 implies that physical states are U(N) singlets subjected to the additional

condition (2.3) fixing the total number of ψa components equal to kN . The Hamiltonian

can be written:

H = BTr
(

A†A
)

+
B

2
N2 − g

2
Tr [X1,X2]

2 , (2.4)

after introducing the variable,

A =
1

2ℓ
(X1 + iX2) +

iℓ

2
(Π1 + iΠ2) , (2.5)

and its adjoint A†, involving the magnetic length, ℓ =
√

2/B. These quantities obey the

commutation relations of N2 independent harmonic oscillators (using double brackets for

quantum commutators):

[[

Aab, A
†
cd

]]

= δadδbc, [[Aab, Acd]] = 0. (2.6)

Therefore, for g = 0 the Hamiltonian describes Landau levels populated by N2 two-

dimensional “particles” with phase-space coordinates, {Πi
ab,X

i
ab}, a, b = 1, . . . , N , i = 1, 2.

Degenerate angular momentum excitations are described by an independent set of oscilla-

tors:

B =
1

2ℓ
(X1 − iX2) +

iℓ

2
(Π1 − iΠ2) , (2.7)

[[

Bab, B
†
cd

]]

= δadδbc, [[Bab, Bcd]] = 0, (2.8)

that commute with A,A†. The total angular momentum of the N2 particles is

J = Tr (X1Π2 −X2Π1) = Tr
(

B†B −A†A
)

. (2.9)

The N2- particle states are further constrained by the Gauss law (2.2): as we shall see

later, this enforces a kind of generalized exclusion statistics. It is convenient to introduce

the complex matrices,

X = X1 + iX2, X = X1 − iX2, (2.10)

Π =
1

2
(Π1 − iΠ2) , Π =

1

2
(Π1 + iΠ2) , (2.11)
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Figure 1: Phase diagram of the Maxwell-Chern-Simons matrix theory. The vertical axes g = 0

and g = ∞ have been discussed in ref. [19]. The Chern-Simons matrix model [8] is found at B → ∞
in the left down corner.

and use the bar for denoting the Hermitean conjugate of classical matrices, keeping the

dagger for the quantum adjoint. Hereafter we set the magnetic length to one, i.e. B = 2.

For states with constant density,2 the angular momentum measures the extension of

the “droplet of fluid”, such that we can relate it to the semiclassical filling fraction νcl by

the formula,

νcl = lim
N→∞

N(N − 1)

2〈J〉 . (2.12)

In a physical system of finite size, one can control the density of the droplet by adding

a confining potential VC to the Hamiltonian:

H → H + VC = H + ωTr
(

B†B
)

+ ωnTr
(

B†nBn
)

. (2.13)

The strength ω is of order O(B/N) such that the structure of Landau levels is not destroyed

by putting nB = O(N) particles per level. The higher order terms O(ωn) also commute

with the g = 0 Hamiltonian: one can show that their eigenvalues on constant-density states

are very large O(Nn−1) for fillings nB > n and thus they can be used to simulate finite-box

boundary conditions [19].

In figure (1) we illustrate the phase diagram of the Maxwell-Chern-Simons matrix

theory as a function of the parameters B/m and g. The analysis of [19] found the properties

of the theory on the axes g = 0 and g = ∞. For g = 0, the theory is exactly solvable and

possess a set of ground states that are in one-to-one relation with the Laughlin and Jain

ground states with filling fractions ν = m/(mk+1). These states are selected by the value

of k and by adjusting the density via the parameters ω, ωn of the confining potential (2.13);

furthermore, they are unique non-degenerate states obeying the conditions (Aab)
m Ψ = 0

that projects out degeneracies specific of matrix states, as it will be explained momentarily.

2See section 4 for the definition of density in matrix theories.
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The limit B → ∞ at g = 0 (and g finite) in the Hamiltonian (2.4) corresponds to

vanishing kinetic term, i.e. to the constraints A = A† = 0 of lowest Landau level [20]. In

this limit, the Gauss law (2.2) reduces to:

G = −iB [X1,X2] −Bθ + ψ ⊗ ψ†, (2.14)

and it uniquely fixes the noncommutativity of matrices. The potential term in H (2.4)

becomes a constant for all physical states and the theory reduces to the Chern-Simons

matrix model [8] with trivial dynamics, H = VC [19].

For g = ∞ (B finite), the theory describes N ordinary electrons with coordinates given

by the complex eigenvalues λa, a = 1, . . . , N , of X, interacting with the two-dimensional

Calogero potential.

2.2 g → ∞ limit and electron theory

For large g values, the potential term in H (2.4), gTr[X,X ]2, restricts the configuration

space of complex matrices to those commuting with their conjugate, the so-called “normal”

matrices [21]. Therefore, X can be made diagonal by unitary (gauge) transformation

and the theory completely reduces to the eigenvalues, that are interpreted as electron

coordinates. Any complex matrix can be written [22] as, X = U(Λ + R)U , in terms of a

unitary matrix U (the gauge degrees of freedom), a diagonal matrix Λ (the eigenvalues) and

a upper triangular complex matrix R (additional d.o.f.). Therefore, the gauge-invariant

degrees of freedom different from the eigenvalues contained in the R matrix are suppressed

for g → ∞.

We can thus take the diagonal gauge for X and decompose the momenta Π,Π in

diagonal and off-diagonal matrices, respectively called p and Γ:

X = Λ, Π = p+ Γ, Π = p+ Γ. (2.15)

In this gauge, the Gauss law (2.2) can be solved at the classical level and it determines the

off-diagonal momenta,

Γab =
ik

2

λa − λb
|λa − λb|2

, a 6= b. (2.16)

Upon inserting them into the Hamiltonian (2.4), the diagonal and off-diagonal components

decouple and one obtains,

H|g=∞ = 2
N
∑

a=1

(

λa
2

− ipa

)(

λa
2

+ ipa

)

+
k2

2

N
∑

a6=b=1

1

|λa − λb|2
. (2.17)

The quantization can be done on the remaining independent variables, which are the com-

plex eigenvalues λa and their conjugate momenta pa [23]. Therefore, the theory reduced

to the eigenvalues corresponds to the ordinary Landau problem of N electrons plus an in-

duced two-dimensional Calogero interaction. The measure of integration on matrices (2.19)

also reduces to that of ordinary electrons after incorporating one Vandermonde factor in

the wave functions [21]. This causes a renormalization of the filling fraction from the

semiclassical expression (2.12): 1/ν = 1 + 1/νcl

– 6 –
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We conclude that the Maxwell-Chern-Simons matrix theory in the g = ∞ limit makes

contact with the physical problem of the fractional quantum Hall effect: the only difference

is that the Coulomb repulsion e2/r is replaced by the Calogero interaction k2/r2. Numerical

results [24, 25, 18, 26] indicate that quantum Hall incompressible fluid states are rather

robust and do not depend on the detailed form of the repulsive potential at short distance,

for large B, at least for the qualitative features. The g = ∞ theory is not, by itself, less

difficult than the ab-initio quantum Hall problem: the gap is non-perturbative and there

are no small parameters. The advantage of embedding the problem into the matrix theory

is that of making contact with the solvable g = 0 limit.

2.3 Matrix Jain states at g = 0

The wave functions of the Maxwell-Chern-Simons theory take the form,

Ψ = e−Tr(XX)/2−ψψ/2Φ(X,X,ψ), (2.18)

and their integration measure reads:

〈Ψ1|Ψ2〉 =

∫

DXDXDψDψe−TrXX−ψψΦ∗
1(X,X,ψ)Φ2(X,X,ψ). (2.19)

At g = 0, the energy and momentum eigenstates are obtained by applying powers of the A†
ab

and B†
ab operators (2.5), (2.7) to the empty ground state Ψo = exp

(

−TrXX/2 − ψψ/2
)

(as in ordinary Landau levels), leading to:

Ψ = e−TrXX/2−ψψ/2Φ(B,A,ψ), E = BNA, J = NB −NA. (2.20)

The wavefunction Φ is a homogeneous polynomial of B = X − ∂/∂X and A = X − ∂/∂X,

that can be treated as c-number matrices because they commute among themselves. The

energy E = BNA and momentum J = NB −NA of the state are expressed in terms of the

eigenvalues of TrA†A and TrB†B, NA and NB respectively, that count the total number

of matrices A and B in Φ.

In the lowest Landau level, the wave function obeys AabΨ = 0, ∀a, b, thus the polyno-

mial part Φ does not contain any Aab: it is a analytic function of the Bab variables, equal

to the Xab. The physical states Φ(X,ψ) obeying the Gauss law are U(N) singlets that

contain any number of Xab and Nk copies of the ψ vector (owing to (2.3)). The solutions

for k = 1 are given by [10]:

Φ{n1,...,nN} (X,ψ) = εa1...aN (Xn1ψ)a1 · · · (X
nNψ)aN

, 0 ≤ n1 < n2 < · · · < nN , (2.21)

where ε is the completely antisymmetric tensor and {ni} any ordered set of integers. So-

lutions for k > 1 are obtained by multiplying k terms (2.21), leading to the expressions,

Φ{n1
1,...,n

1
N}···{nk

1 ,...,n
k
N}. The ground state in the confining potential Tr(XX†) is given by the

closest packing {0, 1, . . . , N − 1} that has the lowest angular momentum, i.e. lowest degree

in X:

Φk,gs =
[

εa1...aNψa1 (Xψ)a2 · · ·
(

XN−1ψ
)

aN

]k
. (2.22)
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If we diagonalize the complex matrix X by similarity transformation: X = V −1ΛV ,

Λ = diag(λ1, . . . , λN ), ψ = V −1φ, the dependence on V and φ factorizes and the powers of

eigenvalues make up the Vandermonde determinant ∆(λ) =
∏

a<b(λa − λb), as follows:

Φk,gs (Λ, V, ψ) = (detV )−k
∏

1≤a<b≤N

(λa − λb)
k

(

∏

c

φc

)k

. (2.23)

The central piece is indeed the Laughlin wave function [24], upon interpreting the eigen-

values as electron coordinates [10, 11]. The value of the filling fraction (2.12) is:

ν =
1

k + 1
, (2.24)

by keeping into account the extra Vandermonde coming from the integration measure.

Eq. (2.23) is the most interesting result obtained in the noncommutative approach and

the Chern-Simons matrix model [8, 10]: that of deriving the Laughlin wave function from

gauge invariance in a matrix theory with background charge θ. Furthermore, Susskind’s

semiclassical analysis [7] showed that, in the limit θ → 0, this matrix state describes an

incompressible fluid in high magnetic fields with density, ρo = 1/(2πθ) , and classical filling

fraction νcl = 2πρo/B = 1/Bθ = 1/k in agreement with the earlier identification.

The analog of the Laughlin quasi-holes are realized by shifting the occupation numbers

of matrices, e.g. by the state in (2.21) with {n1, n2, · · · , nM} = {1, 2, · · · , N}. This has

∆J = O(N) and thus a finite gap ∆E = O(B). On the other hand, the quasi-particle

excitations cannot be realized in the Chern-Simons matrix model [8]. In general, states

with higher density do not exist in this theory, because they would need to populate higher

Landau levels that are absent.

Further difficulties in matching the Chern-Simons matrix model to the Laughlin physics

at the quantized level were discussed in refs. [11, 15, 13]: since the matrices X,X are

noncommuting (cf. (2.14)), the theory is not well suited for the description of electron

degrees of freedom. The reduction [15] to eigenvalues (λa, λa), interpreted as electron

coordinates, shows that the measure of integration (2.19) does not become that of the

Landau levels and the Laughlin state (2.23) gets deformed at short distance. These findings

should be contrasted with the results in section 2.2 for Maxwell-Chern-Simons matrix

theory, that possesses a well-definite physical limit at g = ∞ (although difficult to solve).

The states (2.21) can be represented graphically as “bushes”, as shown in figure 2(a).

The matrices Bab (i.e. Xab) are depicted as oriented segments with indices at their ends and

index summation amounts to joining segments into lines, as customary in gauge theories.

The lines are the “stems” of the bush ending with one ψa, represented by an open dot, and

the epsilon tensor is the N-vertex located at the root of the bush. Bushes have N stems

of different lengths: n1 < n2 < · · · < nN . The position iℓ of one B on the ℓ-th stem,

1 ≤ iℓ ≤ nℓ, is called the “height” on the stem.

The solutions of the Gauss law (2.2) for states in higher Landau levels are Φ polynomi-

als involving both B and A matrices: given that they transform in the same way under the

gauge group, these polynomials can be represented by bushes whose stems are arbitrary

– 8 –
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( b ) ( c )( a )

Nn
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1n

Figure 2: Graphical representation of gauge invariant states: (a) general states in the lowest

Landau level (cf. eq. (2.21)); (b) and (c), N = 3 examples in the second and third levels involving

both matrices, B (thin line) and A (in bold).

words of B and A, as shown in figure 2(b), 2(c), where Aab is represented by a bold segment.

Since two stems cannot be equal, one obtains a kind of Fermi sea of N “one-particle states”

corresponding to the N strands. However, there are additional degeneracies with respect

to an ordinary fermionic system, because in each stem all possible words of A and B of

given length yield independent states (for large N), owing to matrix noncommutativity, as

seen in figure 2(b) and 2(c).

The complete filling of all the available degenerate E > 0 states clearly gives very

dense and inhomogeneous fluids that are incompatible with the physics of the quantum

Hall effect. Moreover, the matrix degeneracies lead to a density of states in the g = 0

theory that grows exponentially with the energy. This is a characteristic of string theories

that is not suitable for the Hall effect [3]. Of course, for g > 0 the potential Tr[X,X ]2

restricts the matrix noncommutativity and reduces the degeneracy: at g = ∞, this is

not present and the theory can describe a physical electron system, as is clear from the

discussion of section 2.2.

Given that the g > 0 theory is very difficult to solve, in ref. [19] we introduced a set

of projections that limit the matrix degeneracy at g = 0 and are explicitly solvable. These

projections are expressed by the following constraints on the wave function,

(Aab)
mΨ = 0 −→

(

∂

∂Aab

)m

Φ(A,B,ψ) = 0, ∀a, b, (2.25)

for a given value of m. The m = 1 case is the lowest Landau level discussed before with

no A dependence, while m taking successive values m = 2, 3, . . . gradually allow larger

A multiplicities and thus matrix degeneracies. Note that in equation (2.25), each matrix

component Aab is raised to the m-th power, without index summation: the condition is

– 9 –
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nevertheless gauge invariant and it admits an equivalent manifestly invariant form that is

discussed in section 3.

The results of ref. [19] were rather interesting: not only the projections (2.25) allow

homogeneous ground states suitable for describing quantum Hall fluids, but also they

precisely occur in the Jain pattern of filling fractions, ν = m/(mk+1), and their derivation

repeats step-by step the Jain “composite fermion” construction [18].

Let us recall the main points of the analysis of [19]. Consider first the projection (2.25)

form = 2: the solutions are polynomials that are at most linear in each component Aab. Let

us imagine that one or more A matrices are present at points on the bush as in figure (2).

The differential operator (2.25) acts by sequentially erasing pairs of bold lines on the bush,

each time detaching two strands and leaving four free extrema with indices fixed to either

a or b, with no summation on them. For example, when acting on a pair of A located on

the same stem, it yields a non-vanishing result: this limits the bushes to have one A per

stem at most. The A2 ≈ 0 conditions can be satisfied if cancellations occur for pairs of A

on different stems, as it follows:

(

Aba

)2
Φ = · · · + ε...i...j...

(

· · ·MiaNja · · · V bW b
)

+ · · · , (a, b fixed). (2.26)

This expression vanishes for M = N due to the antisymmetry of the epsilon tensor. The

general solution of (2.25) is given by bushes involving one A per stem at most (max N

matrices in total), with all of them located at the same height on the stems [19]. In

formulas:

Φ{n1,...,nℓ;p;nℓ+1,...,nM} = εi1...iN
ℓ
∏

k=1

(

B
nkψ

)

ik

N
∏

k=ℓ+1

(

B
p
AB

nkψ
)

ik
,

0 ≤ n1 < · · · < nℓ, 0 ≤ nℓ+1 < · · · < nN . (2.27)

If the matrices A,B were diagonal, these states would be Slater determinants of ordi-

nary Landau levels. The matrix states have further degeneracies by commuting A,B pairs:

however, commutations are almost impossible in the solution (2.27) of the A2 ≈ 0 con-

straint, were it not for the p dependence. This shows how the projection works in reducing

matrix degeneracies.

The ground state in the A2 ≈ 0 theory with finite-box conditions corresponds to

homogeneous filling all the allowed states in the first and second Landau levels with N/2

“gauge invariant particles” each. It reads:

Φ1/2,gs = εi1...iN
N/2
∏

k=1

(

B
k−1

ψ
)

ik

N/2
∏

k=1

(

AB
k−1

ψ
)

iN/2+k

, (2.28)

with angular momentum J = N(N − 4)/4. This state is non-degenerate due to the

vanishing of the p parameter in (2.27). It has filling fraction ν∗ = 2, assuming homogeneity

of its density.3

3This will be shown in section 4.
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The ground states for k > 1 are products of k bushes: they obey the constraint A2 ≈ 0

provided that the two derivatives always vanish when distributed over the bushes. Given

one bush of type (2.28), obeying A2Φ1/2,gs = 0, one can form the state,

Φk+1/2,gs = Φk−1,gsΦ1/2,gs, (2.29)

where the other (k−1) bushes satisfy AΦk−1,gs = 0 and actually are Laughlin’s one (2.21).

The angular momentum value for this state corresponds to the filling fraction 1/ν = k+1/2

(cf (2.12)).

We thus find the important result that the A2 ≈ 0 projected Maxwell-Chern-Simons

theory possesses non-degenerate ground states that are the matrix analogues of the Jain

states obtained by composite-fermion transformation at ν∗ = 2, i.e. 1/ν = 1/ν∗ + k. The

matrix states (2.29), (2.28) would actually be exactly equal to Jain’s wave functions, if

the A,B matrices were diagonal: the ψ dependence would factorize and the matrix states

reduce to the Slater determinants of Jain’s wave functions (before their projection to the

lowest Landau level) [18, 26].

The correspondence extends to the whole Jain series: the other ν∗ = m non-degenerate

ground states, corresponding to ν = m/(mk+ 1), are respectively obtained in the theories

with Am ≈ 0 projections. They read:

Φk+1/m,gs = Φk−1,gsΦ1/m,gs, (2.30)

where,

Φ1/m,gs = εi1...iN
N/m
∏

k=1

[

(

B
k−1

ψ
)

ik

(

AB
k−1

ψ
)

ik+N/m

· · ·
(

A
m−1

B
k−1

ψ
)

ik+(m−1)N/m

]

.

(2.31)

Note that in the Am ≈ 0 theory, the lower density states that were non-degenerate in the

Ak ≈ 0 theories, k < m, become degenerate; actually, when the boundary potential is

tuned for letting (2.31) to be the ground state, the former states (k < m) become excited

states. In conclusion, in ref. [19] we found that the ground states of the properly projected

Maxwell-Chern-Simons matrix theory reproduce the Jain pattern of the composite fermion

construction [18]; the matrix states are non-degenerate for specific values of the density

that are controlled by the boundary potential.

These results indicate that the Jain composite fermions have some relations with the

D0-brane degrees of freedom and their underlying gauge invariance. Both of them have

been described as dipoles: according to Jain [18] and Haldane-Pasquier [27], the composite

fermion can be considered as the bound state of an electron and a hole (a vortex in the

electron fluid). On the other side, matrix gauge theories, and the equivalent noncommu-

tative theories [3], describe D0 branes that are point-like dipoles in the low-energy limit of

string theory. Although further relations between these two dipole pictures remain to be

found, in this paper we shall find further evidences that the matrix ground states describe

semiclassical incompressible fluids with some of the properties of Hall states.
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m #pi = 1 #pi = 2 #pi = 3 #pi = 4 1/ν = 1 + 1/νcl E/B

1 k k + 1 0

2 k − 1 1 k + 1/2 N/2

3 k − 2 2 k N

3 k − 1 0 1 k + 1/3 N

4 k − 3 3 k − 1/2 3N/2

4 k − 2 1 1 k − 1/6 3N/2

4 k − 1 0 0 1 k + 1/4 3N/2

Table 1: Examples of standard (2.30) and generalized (2.32) Jain states for fixed value of k, ordered

by the level m of projection, Am ≈ 0, and their filling fraction ν and energy E (disregarding the

confining potential). Note that the experimentally relevant values are k = 2, 4.

2.4 Generalized Jain’s hierarchical states

In the Am ≈ 0 projected theories with m ≥ 3, there are other solutions of the Gauss law

for k > 1 besides the Jain states (2.30). These are obtained by combining products of any

k = 1 solution (2.31), as follows:

Φ 1
ν
,gs =

k
∏

i=1

Φ 1
pi
,gs,

1

ν
= 1 +

k
∑

i=1

1

pi
,

AqΦ 1
ν
,gs = 0, q = 1 +

k
∑

i=1

(pi − 1). (2.32)

In this equation, we also wrote the associated filling fractions using eq. (2.12), i.e. assuming

homogeneous densities, and the condition Aq ≈ 0 that they satisfy. The Jain mapping to

a single set of ν∗ = q effective Landau levels does not hold for these generalized states

(having more than one pi > 1). Actually, analogous generalized states were considered by

Jain in his composite-fermion theory [18], but were discarded due to their instability (small

or vanishing numerical gap).

Let us compare the generalized (2.32) and standard (2.30) Jain states at fixed values

of the background k (keeping in mind that the physical values are k = 2, 4). The energy

of the generalized states is additive in the ν∗ = pi, k = 1, blocks and reads:

E 1
p1

+···+ 1
pk
,gs =

BN

2

k
∑

i=1

(pi − 1) + VC . (2.33)

The analysis of some examples shows that these additional solutions have in general higher

energies for the same filling or are more compact for the same energy than the standard

Jain states (2.30) (see table 1). States of higher energies are clearly irrelevant at low

temperatures; higher-density states strongly deviate from the semiclassical incompressible

fluid value ν = 1/(k+1) for background Bθ = k, that is specific of the Laughlin factors [7].

The analysis of the corresponding semiclassical states in section 4 will show that most of

these states are not incompressible fluids (density not piecewise constant).
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3. Properties of the projection A
m

≈ 0

In this section we discuss the physical meaning of the projection:

(Aab)
m Ψ

(

A,B
)

= 0, ∀a, b, (3.1)

that limits the degeneracy of matrix quantum states at g = 0. Although the operator

(Aab)
m is not gauge invariant, its kernel restricted to gauge invariant states yields a gauge

invariant condition,4 as explicitly seen in section 2. Therefore, there should exist a mani-

festly gauge invariant expression for this condition, that is found in this section.

A simple example is useful to clarify the following discussion. In a two dimensional

quantum mechanical problem with rotation invariance (O(2) global symmetry), we consider

the condition:

PmΦ ≡
(

∂

∂x

)m

Φ
(

r2
)

= 0, r2 = x2 + y2, (3.2)

where Φ is a reduced (polynomial) wave function. The condition is not O(2) invariant but

its kernel acting on rotation invariant functions does: indeed, it limits the order of the

polynomial to O(rm−1). This example suggests two remarks:

• The condition (3.2) can have many different forms, that correspond to points on its

orbit in the “gauge” O(2) group: for example, an equivalent form is (∂/∂y)mΦ = 0,

corresponding to a π/2 rotation. All these conditions are equally satisfied.

• A manifestly gauge-invariant expression can be obtained by integrating over the gauge

orbit, as follows:

Pm −→ P g.i.m =

∫ 2π

0
dθ

(

cos θ
∂

∂x
+ sin θ

∂

∂y

)m

. (3.3)

However, this vanish for m odd: the average looses information because the operator

(∂/∂x)m is not positive definite. Clearly, it can be made positive (and gauge invariant) by

contracting with another gauge-dependent term to obtain powers of the dilatation operator

Dm = (xi∂/∂xi)m.

We are now going to follow analogous steps for the condition Am ≈ 0. First we find

an equivalent, more general form. Consider an infinitesimal SU(N) gauge transformation

U = 1+ iεT : the Hermitean matrix T can be expressed by the matrices E(ij) with a single

non-vanishing component, E
(ij)
ab = δiaδ

j
b , in symmetric or antisymmetric combinations, T =

E(ij) +E(ji) or T = i(E(ij)−E(ji)). Upon performing the gauge transformation, the m = 2

constraint (2.25), (U †AU)2ab, acquires an additional O(ε) term that should also vanish on

the wave functions obeying, (Aab)
2Ψ = 0:

0 ≈ Aab
[

Eij , A
]

ab
= Aab (δaiAjb −Aaiδjb) , ∀i 6= j, ∀a, b. (3.4)

We now analyse the various cases:

4A formal proof of this statement is given in appendix A
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• I. If a = b and i = a or j = a, we obtain the conditions,

0 ≈ AaaAja ≈ AaaAai, ∀i, j 6= a.

• II. If a 6= b, we obtain,

1. for i = a and j 6= b −→ 0 ≈ AabAjb, ∀j 6= a, b,

2. for i 6= a and j = b −→ 0 ≈ AabAai, ∀i 6= a, b,

3. for i = a and j = b −→ 0 ≈ Aab (Abb −Aaa) .

Note that each term in the linear combination of case II.3 independently vanishes by

case I.

These conditions can be summarized as follows:

AabAa′bΨ = 0, ∀a, a′, b,
AabAab′Ψ = 0, ∀a, b, b′. (3.5)

They are more general than the original expression (2.25) for m = 2, corresponding to

a = a′ or b = b′. Of course, iteration to O(ε2) of the gauge transformation produce further

identities: these involve linear combinations of A2 terms that are not particularly useful;

for example, one such condition is: AabAjc +AjbAac ≈ 0.

The O(ε2) analysis is necessary to obtain the generalized constraint for m = 3: the

O(ε) expression is similarly, AabAabAab′ ≈ 0, and its further transformation yields,

0 ≈ 2Aab
[

Eij , A
]

ab
Aab′ +AabAab

[

Eij , A
]

ab′
.

This expression contains the m = 3 constraint analogous to (3.5):

AabAa′bAa′′bΨ = 0, ∀a, a′, a′′, b,
AabAab′Aab′′Ψ = 0, ∀a, b, b′, b′′, (3.6)

together with other relations involving linear combinations of cubic terms.

Following the O(2) example, we can now transform the new expressions (3.5) into

positive definite operators. We recall that the lowest Landau level condition corresponds

to the vanishing of the total energy, that is a sum of positive terms:

H = Tr
(

A†A
)

=
∑

a,b

A∗
abAab ≈ 0 ⇔ Aab ≈ 0,∀a, b. (3.7)

We can construct the following positive definite expressions:

Q2 =
∑

a,b,b′

A†
b′aA

†
baAabAab′ , (3.8)

Q′
2 =

∑

a,a′,b

A†
ba′A

†
baAabAa′b, (3.9)
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whose vanishing is equivalent to the m = 2 conditions (3.5). These quantities are not

yet gauge invariant but are convenient for the physical interpretation. We introduce the

(gauge variant) energy operators for one-particle matrix states, that are summed over

matrix indices of one row or column of Aab, Za or Z ′
b, respectively:

Za =
∑

b

A†
baAab, Z ′

b =
∑

a

A†
baAab. (3.10)

Using these energy operators, we can rewrite (3.8), (3.9) as follows:

Q2 =
∑

a

Za (Za − 1) , Q′
2 =

∑

b

Z ′
b

(

Z ′
b − 1

)

. (3.11)

In this form, the constraints Q2Ψ = Q′
2Ψ = 0 admit the following physical interpretation:

there is a gauge choice in which the allowed states contains at most one “particle” in the

second Landau level (energy equal to one) for (a, b) indices belonging to each row and

column.

The constraint for m = 3 (2.25) similarly becomes:

Q3 =
∑

a

Za (Za − 1) (Za − 2) , Q′
3 =

∑

b

Z ′
b

(

Z ′
b − 1

) (

Z ′
b − 2

)

. (3.12)

This requires that there at most 2 particles in the second Landau level or a single particle

in the third level for any set of indices in a row or column. The matrix labels are not gauge

invariant, then these occupancies are only verified in specific gauges; nevertheless, the

present form of the constraints can be implemented in the semiclassical limit on expectation

values, 〈Aab〉, as explained in section 4.

Next, we obtain the gauge-invariant form of the constraint Q2, Q
′
2 by averaging over

the gauge group. We define:

Qg.i.2 =

∫

DUQ′
2(U) =

∑

b

∫

DUU †
biA

†
ia′U

†
bj A

†
jaAakUkbAa′lUlb, (3.13)

where DU is the invariant Haar measure [28]. The integrand is positive definite for any

U value, because it can be thought of as the norm of a vector: Q2(U) ∼ ∑

b |A · v(b)|4,
where v

(b)
a = Uanδ

b
n is a rotated unit vector. Therefore, we do not loose any information by

performing the group average.

Group integrals of products of U,U † matrices can be found e.g. in ref. [28]: their

results can be described as follows. Representing the unitary matrices with upper and

lower indices, Uab → U b
a , (U †)ab → (U †)ab, the result of integrating n (U,U †) pairs is a

combination of n delta functions relating the upper indices among themselves times other

n deltas connecting the lower indices. The simplest integral is:
∫

DU(U †)aa′U
b
b′ =

1

N
δabδa′b′ .

In the general case of n (U,U †) pairs, the pairings of upper (lower) indices by delta functions

follow patterns given by the permutation of n elements, with specific weight for each
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conjugacy class of permutations [28]. For n = 2, one finds:

∫

DU(U †)aa′U
b
b′ (U †)cc′U

d
d′ =

1

N2 − 1

[

δabδcdδa′b′δc′d′ + δadδcbδa′d′δc′b′ −
1

N

(

δabδcdδa′d′δc′b′ + δadδcbδa′b′δc′d′
)

]

.

In the case of the constraint Q′
2 (3.9), all the upper indices are simultaneously taking the

same value b; thus, the different delta-function pairings of upper indices take the same unit

value. As a result, the pairings of lower indices get averaged over, and reduce to a plain

sum over all pair permutations:

Qg.i.2 ∝ (δkiδlj + δkjδli)A
†
ia′A

†
jaAakAa′l. (3.14)

Upon commuting the operators to bring summed indices close each other, we finally find the

manifestly gauge-invariant form of the A2 ≈ 0 constraint (disregarding the normalization):

Qg.i.2 ≈ 0, Qg.i.2 = Tr
(

A†AA†A
)

+
(

TrA†A
)2

− (N + 1)Tr
(

A†A
)

. (3.15)

The same expression is also obtained by group averaging the other operator Q2 in (3.8).

One can check that the action of the gauge-invariant constraint Qg.i.2 on bush wave functions

(cf. section 2) is completely equivalent to that of the gauge-variant condition A2 ≈ 0 [19].

The gauge invariant form of the m = 3 constraint can be similarly obtained by group

averaging (3.6), leading to:

Qg.i.3 =
∑

σ∈S3

A†
i1b
A†
i2b′
A†
i3b′′

Ab′′iσ(3)
Ab′iσ(2)

Abiσ(1)
. (3.16)

The form of this expression corresponding to (3.15) is not particularly illuminating. The

gauge-invariant expression (3.16) straightforwardly generalizes to higher m values.

In conclusion, in this section we have found equivalent forms of the projections Am ≈ 0

of g = 0 matrix states: the first expression (3.11), (3.12) in terms of occupation num-

bers is useful for the semiclassical limit considered in the next section; the second expres-

sion (3.15), (3.16) is manifestly gauge invariant. In the latter form, the constraint can be

added to the Hamiltonian with a large positive coupling constant to realize a softer form

of projection, where matrix states violating the constraint are now allowed but possess

very high energy. For example, the quasi-particles excitations over the Jain ground states

ν = m/(mk + 1) would be possible, while they are absent in the Am ≈ 0-projected theory,

as explained in section 3. A detailed analysis of this issue is postponed to a following

publication.

4. Droplet ground state solutions

In this section we study the g = 0 Maxwell-Chern-Simons theory in the semiclassical limit:

we solve the classical equation of motion including the quantum constraints, first for the

ground states and then for the quasi-hole excited states. We shall find the semiclassical
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states that correspond to the quantum states with homogeneous filling and composite-

fermion structure of section 2 [19]. The motivations for this semiclassical analysis are

twofold: on one side, previous experience [8, 3, 12, 13, 16] with noncommutative field

theory has shown that the classical fluid dynamics incorporates some properties of the full

quantum theory. From another side, it is know that the Laughlin states in the quantum Hall

effect are incompressible fluids that become semiclassical in the thermodynamic limit N →
∞ [29, 30]. The semiclassical ground states we find in this section are also incompressible

fluids which, we believe, may give rather accurate descriptions of the quantum matrix

states for large N values [21].

Let us start by writing the classical equations of motion: the Hamiltonian of the

Maxwell-Chern-Simons theory at g = 0 can be written as follows:

H = 2Tr
(

AA
)

+ ωTr
(

BB
)

+ Tr
[

Λ
(

[A,A] + [B,B] − k + ψ ⊗ ψ
)]

(4.1)

+
∑

a

Γa (Za − γ) +
∑

b

Γ′
b

(

Z ′
b − γ′

)

,

γ, γ′ = 0, 1, . . . ,m− 1.

We set B = 2, Bθ = k ∈ Z, and included the Gauss law constraint via the Hermitean La-

grange multiplier Λ. The projection Am ≈ 0 analyzed in section 3 is enforced by adding two

other Lagrange multipliers Γa,Γ
′
b times the energies, Za =

∑

bAbaAab, Z
′
b =

∑

aAbaAab,

of single-particle states with matrix indices summed over rows or columns. We replace the

nonlinear constraints (3.11), (3.12) with linear expressions involving the parameters γ, γ′

taking the allowed values of Za, Z
′
b. Since the constraints are not gauge invariant, we shall

assume that we work in a gauge where they take integer values. The gauge-invariant form

of the constraint (3.15) found at the end of section 3 is not convenient because it would

lead to non-linear equations of motion that cannot be solved analytically. For the same

reason, we limit the confining potential (2.13) to the quadratic term: later we shall see how

to avoid ground state degeneracies that may arise with this potential.

We vary the Hamiltonian with respect to A,B, canonically equivalent to the original

X,Π, and obtain the equations:

iȦab = 2Aab − [Λ, A]ab +Aab
(

Γa + Γ′
b

)

, (4.2)

iḂ = − [Λ, B] + ωB, (4.3)

G =
[

A,A
]

+
[

B,B
]

− k + ψ ⊗ ψ = 0, (4.4)

Za =
∑

b

AbaAab = γ, γ = 0, 1, . . . ,m− 1. (4.5)

Z ′
b =

∑

a

AbaAab = γ′, γ′ = 0, 1, . . . ,m− 1. (4.6)

We first discuss ground state solutions corresponding to Ȧ = Ḃ = 0.

4.1 Laughlin ground states

We can gain some intuition on the matrix equations (4.2), (4.3), (4.4), (4.5) by recalling

the solutions of the Chern-Simons matrix model [8], corresponding to the lowest Landau
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level in our theory. In the case A = A = 0, we have B = X and the ground state equations

reduce to:

[Λ, B] = ωB, G =
[

B,B
]

− k + ψ ⊗ ψ = 0. (4.7)

These are the commutation relations of a truncated quantum harmonic oscillator, with Λ

playing the role of Hamiltonian. We can diagonalize it by gauge choice and write standard

oscillator matrices in the “energy” basis, |0〉, |1〉, . . . , |N − 1〉 [8]:

B =
√
k

N−1
∑

n=1

√
n | n〉〈n− 1 |, Λ = ω

N−1
∑

n=1

n | n〉〈n |,

ψ =
√
kN | N − 1〉. (4.8)

In matrix form for N = 3:

B =
√
k







0 0 0

1 0 0

0
√

2 0






, Λ = ω







1 0 0

0 2 0

0 0 3






, ψ =

√
kN







0

0

1






. (4.9)

The solution is characterized by the angular momentum, J = TrBB = kN(N − 1)/2 and

by vanishing energy.

A good definition of the density of semiclassical fluids in matrix models [8] is given in

terms of the gauge invariant eigenvalues of R2 = XX,

ρ(r2) =

N−1
∑

i=0

δ
(

r2 − σi
)

, σi ∈ Spec
(

R2
)

. (4.10)

In the limit N → ∞, this becomes a piecewise continuous function that describes two-

dimensional rotation-invariant distributions (ρ(r) = ρ(r2)/π). A discrete approximation

is:

ρ(r2) =
∑

i

ni
σi+1 − σi

δr2,σi
, (4.11)

involving the Kronecker delta and the ordered set of distinct σi eigenvalues, σi < σj , i < j,

with multiplicities ni.

In Polychronakos’ solution of the Chern-Simons matrix model (4.8), the matrix R2 is

already diagonal,

R2 = XX = diag (0, k, 2k, . . . , (N − 1)k) . (4.12)

Its density (figure 3) is constant and describes a circular droplet of fluid with Laughlin

filling fraction [7]:

νcl =
2πρo
eB

=
1

k
, with ρo =

1

2πθ
. (4.13)

Note that an ordering ambiguity in the definition of R2 was resolved by matching to the

angular momentum spectrum. As said before, there is a shift in the filling fraction in

quantum theory due to a contribution from the integration measure, 1/ν = 1+1/νcl; thus,

k should be even for describing electrons.
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Figure 3: Plot of the density for the semiclassical Laughlin ground state (4.8) for νcl = 1/k, k = 4,

and N = 400.

4.2 Jain ground states

As we showed in section 2.3, the Maxwell Chern-Simons theory contains Jain-like ground

states (2.30), that involve higher Landau levels (A 6= 0). Their filling fractions can be

written as in composite fermion construction [18],

1

ν
=

1

ν∗
+ k + 1, k even, ν∗ = 2, 3, . . . , (4.14)

and their energy and angular momentum values are recalled in table 1. We first note

that these states are characterized by energies O(N) and angular momentum J = O(N2),

thus implying that the matrix A must have elements of O(1) and be much smaller than

B. Indeed, the constraints, Za, Z
′
b = 0, 1, . . . ,m − 1, limits the squares of Aab matrix el-

ements summed over each row or column to take at most the total value (m − 1). Were

it not for this constraint, the A,B matrices could be rescaled in the ground state equa-

tions (4.2), (4.3), (4.4) to eliminate the k dependence, leading to solutions with E = O(kN)

at least.

We now describe the solution of the ground state equations of motion in the A2 ≈ 0

projected theory (γ, γ′ = 0, 1 in (4.5)). Under some minor hypotheses, we find a single

solution corresponding to the unique quantum state with ν∗ = 2 (2.29) [19]. Working

in analogy with the Laughlin case (4.9), we shall try a distribution of R2 eigenvalues

leading to a piecewise constant density. We can consider the gauge in which Λ is diagonal,

Λ = diag(ℓa), and assume that ψ has a single non-vanishing component, i.e. the last one,

as in (4.9), such that the term, (kI − ψ ⊗ ψ), is also diagonal. The equation for B (4.3),

(ℓa − ℓb)Bab = ωBab, (4.15)

requires that B is a raising operator, i.e. non vanishing on a single diagonal, Bab ∝ δa,b+n;

moreover, the Gauss law (4.4) requires, [B,B] ∼ kI, apart from O(1) corrections due to

[A,A]. Therefore, B should be non-vanishing on the first diagonal:

Bac = δa,c+1bc+1, c = 0, . . . , N − 2. (4.16)
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Eq. (4.15) implies evenly spaced Λ eigenvalues, ℓa+1 − ℓa = ω, and leaves the components

bc undetermined. The equation (4.2) for A reads:

Aab 6= 0 −→ Γa + Γ′
b = (a− b)ω − 2, (4.17)

that can always be solved for Γa,Γ
′
b. The constraints, Za, Z

′
b = 0, 1, imply that Aab has

one non-vanishing element per row and column, at most, equal to one. If it had exactly

one element per row and column, it would be the representation of a permutation, σ ∈ SN .

Therefore, we can write:

Aab = δa,σ(b)ab+1, ab = 0, 1, σ ∈ SN . (4.18)

We now consider the Gauss law (4.4): all terms in this equation are diagonal matrices,

leading to a system of (N − 1) scalar equations for the A,B matrix elements {ab, bb}. Note

that both matrices AA and BB are diagonal and thus their elements are positive integers

in the semiclassical theory: b2b ∈ Z+. After introducing,

βb = b2b , αb = a2
b , (4.19)

we obtain the system:

β1 = k − α1 + ασ(1),

β2 − β1 = k − α2 + ασ(2),

. . . = . . . . . . ,

βN−1 − βN−2 = k − αN−1 + ασ(N−1). (4.20)

The solution can be found by thinking to the expected shape of the droplet. The quantum

state (2.29) is made of k generalized Slater determinants with homogeneous filling of N

“one-particle” states.5 Each one-particle state is expected to give a constant contribution

to the density of the droplet: there are (k − 1) Laughlin terms and one term with N/2

“particles” in the second Landau levels spanning half of the angular momentum range, as

confirmed by the quantum numbers, E = BN/2 and J = (k − 1 + 1/2)N2/2 + O(N).

The contribution are additive in terms of angular momentum eigenvalues, J ∼ TrBB =
∑N−1

i=1 βi (the O(N) contribution of TrAA is subdominant for N → ∞). Therefore, we

expect, βi ∼ (k − 1)i, for one half of the range, say 0 < i < N/2, and βi ∼ (k + 1)i

for the other half. Moreover, βi should be continuous at i = N/2 in order to obey the

corresponding equation with αi = O(1). We take:

βi = (k − 1)i, 0 <i ≤ N

2
,

βi = (k + 1)i −N,
N

2
<i < N. (4.21)

The solution for A is found by inspection: it has N/2 non-vanishing elements equal to one

on the diagonal of the lower half sector.

5This Fock-space analogy is meaningful for diagonal matrices, and may not be correct in general: its

limitations will be discussed in section 4.3.
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Figure 4: Plot of the density for the Jain matrix ground states with 1/νcl = 1/ν∗ + k, for k = 4

and N = 400: (a) ν∗ = 2 (4.22); (b) ν∗ = 3 (4.24); and (c) ν∗ = 4 (4.26).

Summarizing, the ansatz semiclassical ground state solution for ν∗ = 2 is given by (N

even):

B =

N/2
∑

n=1

√

n(k − 1) | n〉〈n− 1 | +

N−1
∑

n= N
2

+1

√

n(k + 1) −N | n〉〈n− 1 |,

A =

N
2
−1
∑

n=0

| n+
N

2
〉〈n | . (4.22)

In matrix form for N = 4, it reads:

B =











0 0 0 0√
k − 1 0 0 0

0
√

2(k − 1) 0 0

0 0
√

3k − 1 0











, A =











0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0











. (4.23)

This solution has same energy E = BN/2 of the quantum state (2.29) and same angular

momentum J = (k − 1/2)N2/2 + O(N) to leading order (cf. table 1). The matrix R2 =

(B + A)(B + A) contains off-diagonal terms from the mixed products: however, these

give subdominant O(1/
√
N) corrections to the eigenvalues as is clear in a simple two-by-

two matrix example. Thus, Spec(R2) = Spec(BB)(1 + O(1/
√
N)), confirming the earlier

identification of droplet shape with angular momentum spectrum.

In figure 4(a), the density (4.11) of the droplet of fluid is plotted by computing the exact

spectrum for N = 400: up to finite-N fluctuations, this is a two-step constant density as

anticipated. We recall that the same droplet shape is found for the Jain phenomenological
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states before their projection to the lowest Landau level [18]; the density becomes constant

only after projection.6

In ref. [19], we argued that the matrix ground states at g = 0 match one-to-one the

phenomenological Jain states that are good ansatz in the physical limit g = ∞: the two sets

of states become identical in the limit of both X,X diagonal, that can be formally reached

at g = ∞. To establish a relation at the quantum level, we would need to consider the

evolution of the matrix ground states as the coupling is varied in between, 0 < g <∞, and

to check that the gap never vanishes, i.e. that there are no phase transitions in (B, g) plane

(cf. figure 1) separating the g = 0 and g = ∞ regions at these density (i.e. total angular

momentum) values [19]. While this behaviour remains to be proved, it is supported by the

result that the matrix (g = 0) and phenomenological (g = ∞) states have similar densities

of incompressible fluids.

We also note that the solution (4.22) could also be obtained in the lowest-level theory

(Chern-Simons matrix model) by replacing the A matrix with N/2 different “boundary”

auxiliary fields ψ → ψα, α = 1, . . . , N/2. This multi-boundary generalization of Poly-

chronakos’ model has been considered in ref. [9]: it naturally describes multicomponent

droplets, i.e. 1/ν = n/k for n boundary fields. However, the description of Jain states

is rather unnatural, because the number of auxiliary fields is macroscopic and should be

adjusted for each Jain state; moreover, this theory does not admit the physical limit of

commuting matrices.

The solution (4.22) can be easily generalized for the theory with projection A3 ≈ 0, pos-

sessing a Jain ground state with ν∗ = 3: this is found at the specific density that is reached

by tuning the boundary potential. The constraint now allows the Aab components (4.18)

to take values ab = 0, 1,
√

2; we assume again a single non-vanishing element per row and

column, eq. (4.18), otherwise the commutator, [A,A], would have off-diagonal terms that

cannot be matched in the Gauss law equation (4.4). Therefore, the equations (4.20) are

unchanged. Let us recall that the quantum solution contains (k − 1) Laughlin terms and

the ν∗ = 3 piece that puts three particles in the same angular momentum state, ranging

from zero to N/3. Thus, the B ansatz contains eigenvalues spaced by (k − 1) for 2/3 of

the droplet and by (k + 2) for 1/3 of it. The matrix A that solves the Gauss law (4.20)

involves elements on a diagonal extending for 2/3 of the matrix (N should be a multiple

of 3). In conclusion:

B =

2N/3
∑

n=1

√

n(k − 1) | n〉〈n− 1 | +

N−1
∑

n= 2N
3

+1

√

n(k + 2) − 2N | n〉〈n− 1 |,

A =

N
3
−1
∑

n=0

| n+
N

3
〉〈n | +

2N
3

−1
∑

N
3

√
2 | n+

N

3
〉〈n | . (4.24)

6The lowest-level projection in the matrix theory cannot be done at present, lacking an understanding of

the g > 0 regime: at g = 0, it would give a trivial result because the Laughlin state is the unique lowest-level

ground state for any k value.
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In matrix form for N = 6:

B =



















0 0 0 0 0 0√
k − 1 0 0 0 0 0

0
√

2(k − 1) 0 0 0 0

0 0
√

3(k − 1) 0 0 0

0 0 0
√

4(k − 1) 0 0

0 0 0 0
√

5k − 2 0



















,

A =



















0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0
√

2 0 0 0

0 0 0
√

2 0 0



















. (4.25)

The droplet shape plotted in figure 4(b) has again two steps, up to local fluctuations that

vanish for N → ∞.

The ansatz solution with ν∗ = 4 in the theory A4 ≈ 0 again involves a matrix B

with two-speed spectrum and a matrix A with elements ab = 1,
√

2,
√

3, on the diagonal

extending over 3/4 of the matrix (N multiple of 4):

B =

3N/4
∑

n=1

√

n(k − 1) | n〉〈n− 1 | +

N−1
∑

n= 3N
4

+1

√

n(k + 3) − 3N | n〉〈n− 1 |,

A =

N
4
−1
∑

n=0

| n+
N

4
〉〈n | +

2N
4

−1
∑

N
4

√
2 | n+

N

4
〉〈n | +

3N
4

−1
∑

2N
4

√
3 | n+

N

4
〉〈n | . (4.26)

In matrix form for N = 8:

B =





























0 0 0 0 0 0 0 0√
k − 1 0 0 0 0 0 0 0

0
√

2(k − 1) 0 0 0 0 0 0

0 0
√

3(k − 1) 0 0 0 0 0

0 0 0
√

4(k − 1) 0 0 0 0

0 0 0 0
√

5(k − 1) 0 0 0

0 0 0 0 0
√

6(k − 1) 0 0

0 0 0 0 0 0
√

7k − 3 0





























,

A =





























0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0
√

3 0 0 0

0 0 0 0 0
√

3 0 0





























. (4.27)
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The density for N = 400 and k = 4 is plotted in figure 4(c).

4.3 Correspondence of semiclassical and quantum states

Here we provide a simple argument to support the identification of the semiclassical so-

lutions with the quantum states of section 2. Consider first the correspondence for the

Laughlin states, (2.22) and (4.8). We choose the gauge in which the expectation values

of B matrix elements on the quantum state take the classical values (4.8) found in the

previous section, up to subleading corrections for N → ∞. Let us rewrite the N = 4 wave

function in terms of these non-vanishing terms only:7

Φk,gs =
[

εa1a2a3a4ψa1(Bψ)a2(B
2
ψ)a3(B

3
ψ)a4

]k

∼
[

ε3210ψ3(B23ψ3)(B12B23ψ3)(B01B12B23ψ3)
]k
. (4.28)

This “semiclassical wave function” describes “particles” with matrix indices,

(01), (12), (23), in angular momentum states that precisely match the occupation

numbers BabBba given by the classical solution (4.12), equal to (k, 2k, 3k), respectively.

This is a self-consistent argument for the correspondence of states: in the semiclassical

N → ∞ limit, the quantum states match the semiclassical solutions for the leading

occupation numbers.

A similar relation holds for the ν∗ = 2, 3, 4 Jain states. For ν∗ = 2, the quantum wave

function is (2.29); we evaluate it on the semiclassical non-vanishing Aab, Bab values (4.22),

given explicitly for N = 4:

Φk+1/2,gs =
[

εa1a2a3a4ψa1(Bψ)a2(B
2
ψ)a3(B

3
ψ)a4

]k−1

×εa1a2a3a4ψa1(Bψ)a2(Aψ)a3(ABψ)a4

∼
[

ε3210ψ3(B23ψ3)(B12B23ψ3)(B01B12B23ψ3)
]k−1

×ε3210ψ3(B23ψ3)(A13ψ3)(A02B23ψ3). (4.29)

The “one-particle” occupancies of both energy and angular momentum states given by the

wave function again match the expectation values of the corresponding number operators,

AabAba and BabBba, of the classical solution. The correspondence extends to the other

ν∗ = m states that have spectrum of occupancies given by (4.24), (4.26). This argument

support our belief that the large N limit of the matrix theory is semiclassical for the

incompressible fluid ground states (piecewise constant density) and their small excitations.

4.4 Generalized Jain states

In the analysis of [19], we found other quantum solutions to the constraint Am ≈ 0, for

m ≥ 3, besides Jain composite fermion wave functions. They were recalled in section 2.4,

eq. (2.32) and summarized in table 1: these are analogs of Jain’s generalized hierarchical

states, made by products of two or more wave functions with higher-level fillings (pi > 1). In

7Although this expansion should hold for N → ∞, we write the N = 4 case for simplicity; the expression

for general N can be easily inferred.
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the semiclassical analysis, we find that some of these states have corresponding solutions

with piecewise constant density, while most of them do not. Besides, we find spurious

ground states that are allowed by the simplistic quadratic boundary potential used in (4.1).

Let us describe these solutions in turn.

4.4.1 Spurious solutions

There is a variant of the composite-fermion solution for m = 3, 4, . . . , eqs. (4.22), (4.24),

where the A matrix elements take the same values, but their positions are permuted. For

m = 3, this is:

B =

N/3
∑

n=1

√

n(k − 2) | n〉〈n− 1 | +

N−1
∑

n= N
3

+1

√

n(k + 1) −N | n〉〈n− 1 |,

A =

N
3
−1
∑

n=0

√
2 | n+

N

3
〉〈n | +

2N
3

−1
∑

n= N
3

| n+
N

3
〉〈n | . (4.30)

The total energy and angular momentum values are the same as those of the m = 3 Jain

state, E = BN , J ∼ (k − 2/3)N2/2 (cf. table 1). The corresponding B matrix again

describes a two-step droplet. In order to find the corresponding quantum state, we use the

classical-quantum correspondence of the previous section. The single-particle occupation

numbers of the classical solution, for e.g. N = 6, correspond to those of (k − 2) Laughlin

factors plus the occupations (3, 6, 9), (2, 2, 1, 1) and (12) for the components (B23, B34, B45),

(A02A13A24A35) and ψ5, respectively. These components should fit into two wave function

of the type (2.27) that obey A2 ≈ 0 (the product wave function obeying A3 ≈ 0). The

solution, rewritten in gauge invariant form, is:

Φ = (Φ1,gs)
k−2

(

εa1a2a3a4a5a6ψa1(Bψ)a2(B
2
ψ)a3(B

3
ψ)a4(AB

2
ψ)a5(AB

3
ψ)a6

)

×
(

εa1a2a3a4a5a6ψa1(Bψ)a2(Aψ)a3(ABψ)a4(AB
2
ψ)a5(AB

3
ψ)a6

)

. (4.31)

In this state, we recognize that some strands do not have minimal length: thus, this is an

excited state for a Hamiltonian with more realistic boundary terms (2.13) realizing finite-

box conditions.8 The expectation value of the higher boundary potential 〈Tr
(

B
2
B2
)

〉 on

this state is actually larger than that of the m = 3 Jain state (4.24) with same energy and

angular momentum: this confirms our interpretation of the solution (4.30).

4.4.2 Other two-step density states

Among the generalized Jain state in table 1, there are those made by two kinds of terms,

as follows:

Φ 1
ν
,gs = (Φ1,gs)

k−n
(

Φ 1
2
,gs

)n
,

1

ν
=
n

2
+ (k − n) + 1, n = 2, 3, . . . , (4.32)

8The quadratic potential used in (4.1) is known to yield such degeneracies ([29]).

– 25 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
6

0 500 1000 1500 2000

r
2

0.1

0.4

0.7

1

Ρ

HaL

0 500 1000 1500 2000

r
2

0.1

0.4

0.7

1

Ρ

HbL

Figure 5: Plot of the density for the generalized Jain states: (a) 1/νcl = 1/k − 1 (4.33); (b)

1/νcl = 1/k − 3/2 (4.35), with k = 4 and N = 400.

in the notation of eq. (2.32). They obey, An+1 ≈ 0, for n = 2, 3, . . . , and violate the

composite-fermion transformation (4.14) [18]. In the droplet interpretation of classical

solutions of section 4.2, we expect a density of R2 eigenvalues equal to (k + n) for half of

the spectrum and (k − n) for the second half. The ansatz has the two-block structure of

the solution (4.22), with maximal value Aab = n in agreement with the constraint.

The first non-trivial value is n = 2, i.e. m = 3 in table 1:

B =

N/2
∑

n=1

√

(k − 2)n | n〉〈n− 1 | +

N−1
∑

n= N
2

+1

√

(k + 2)n − 2N | n〉〈n− 1 |,

A =

N
2
−1
∑

n=0

√
2 | N

2
+ n〉〈n | . (4.33)

In matrix representation for N = 4:

B =











0 0 0 0√
k−2 0 0 0

0
√

2(k−2) 0 0

0 0
√

3k−2 0











, A =











0 0 0 0

0 0 0 0√
2 0 0 0

0
√

2 0 0











. (4.34)

The analogous state for n = 3, corresponding to (Φ1/2,gs)
3(Φ1,gs)

k−3, is:

B =

N/2
∑

n=1

√

(k − 3)n | n〉〈n− 1 | +

N−1
∑

n= N
2

+1

√

(k + 3)n − 3N | n〉〈n− 1 |,

A =

N
2
−1
∑

n=0

√
3 | N

2
+ n〉〈n |, (4.35)
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and in matrix form for N = 4:

B =











0 0 0 0√
k − 3 0 0 0

0
√

2(k − 3) 0 0

0 0
√

3(k − 1) 0











, A =











0 0 0 0

0 0 0 0√
3 0 0 0

0
√

3 0 0











. (4.36)

In figure 5, we plot the density for these generalized Jain states: these are droplets with

two-step constant density similar to that of composite-fermion states. At present, we do

not have strong arguments to dispose of these additional states: this issue will be further

discussed in the conclusion.

4.4.3 States with many-step density

Other generalized matrix Jain states (2.32) in table 1, for Am ≈ 0, m ≥ 4, are made by the

product of three or more different terms. The simplest one for m = 4 is Φν = Φk−2
1 Φ1/2Φ1/3

with energy E/B = 3N/2 and angular momentum J ∼ (k − 1 − 1/6)N2/2. Within

the droplet interpretation of classical solutions discussed before, we seek for a three-step

solution (N multiple of 6),

βi ∼ i(k − 2), 1 < i <
N

2
; βi ∼ ik,

N

2
< i <

2N

3
; βi ∼ i(k + 3),

2N

3
< i < N.

However, there is no simple Aab solution with entries (0, 1,
√

2,
√

3), that fulfills the Gauss

law equation for the same energy and angular momentum of the quantum state. We proved

this fact for an ansatz with piecewise constant density making up to 6 steps. A four-step

solution (see figure 6) can be found with quantum numbers differing macroscopically from

the quantum values, E ∼ 1.4N,J ∼ (k − 1 − 0.14)N2/2: in particular, the larger angular

momentum identifies it as an excited state. Presumably, the quantum state can be better

approximated by allowing a very large number of steps, leading to a modulated (or singular)

density profile in the large-N limit. This result indicates that most of the multi-component

generalized matrix quantum states found in [19] for projections Am ≈ 0, m ≥ 4, are not

semiclassical incompressible fluids.

4.5 Quasi-holes solutions

As recalled in section 2.3, the g = 0 matrix theory, projected by Am ≈ 0, possess quasi-hole

excitations above the ν∗ = m Jain ground states. In this section we give the corresponding

semiclassical solutions for ν∗ = 2, corresponding to deformation of the density of solu-

tion (4.22) in figure 4(a).

The classical equation of motion for A and B, eq. (4.2), (4.3), are linear and admit a

general solution for excitations:

Aab(t) = e−i(Γa+2)t
(

eitΛA(0)e−itΛ
)

ab
e−i(Γ

′

b)t,

B(t) = e−iωteitΛB(0)e−itΛ. (4.37)

Therefore, we should only solve the Gauss law (4.4) and the constraint (4.5).
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Figure 6: Plot of the density of the 4-step excited state in the A4 ≈ 0 theory, 1/νcl ∼ k− 1− 0.14,

with k = 4 and N = 400.

In the two-step fluid density in figure 4(a), one can have more than one quasi-hole

corresponding to pinching either of the two possible fluids. A hole in the complete fluid

is obtained by generalizing the quasi-hole of the Laughlin state found in ref. [8]: it is a

deformation of the B matrix (4.22) that describes a quasi-hole of charge q > 0 situated at

the origin. The matrix A remains unchanged:

B =

N/2
∑

n=1

√

(k − 1)(n + q) | n〉〈n− 1 |

+
N−1
∑

n= N
2

+1

√

(k − 1)q + n(k + 1) −N | n〉〈n− 1 | +
√

(k − 1)q | 0〉〈N − 1 |,

A =

N
2
−1
∑

n=0

| n+
N

2
〉〈n | . (4.38)

In matrix representation:

B =











0 0 0
√

q(k−1)
√

(1+q)(k−1) 0 0 0

0
√

(2+q)(k−1) 0 0

0 0
√

(3+q)k−1−q 0











, (4.39)

A =











0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0











.

The corresponding density is shown in figure 7(a).

A quasi-hole only affecting the upper layer of the ν∗ = 2 fluid is shown in figure 7(b).
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Figure 7: Plot of the density of the ν∗ = 2 Jain ground state, 1/νcl = k + 1/2, for k = 4 and

N = 400, including: (a) one quasi-hole in the origin (4.38) with q = 60; (b) a quasi-hole in the

upper layer of the fluid (4.40) with q = 60; (c) the quasi-hole out of the origin (4.42) with q = 30

and r = 60.

It is given by the solution:

B =

q
∑

n=0

√

(k + 1)(n + 1) | n+ 1〉〈n | +

N
2

+q
∑

n=q+1

√

(k − 1)(α − q − 1 + n) | n+ 1〉〈n |

+

N−2
∑

n= N
2

+q+1

√

(k + 1)

(

β + n− N

2
− q − 1

)

| n+ 1〉〈n |,

A =

q
∑

n=0

| n〉〈q + 1 + n | +

N
2
−q−2
∑

n=0

| N
2

+ q + 1 + n〉〈2q + 2 + n |, (4.40)

with α = q+k(2+q)
k−1 , β =

2+q+(k−1)N
2

k+1 and q a positive integer. In matrix representation for

N = 8 and q = 1, it reads:

B =





























0 0 0 0 0 0 0 0
√

(k + 1) 0 0 0 0 0 0 0

0
√

2(k + 1) 0 0 0 0 0 0

0 0
√

3k + 1 0 0 0 0 0

0 0 0
√

4k 0 0 0 0

0 0 0 0
√

5k − 1 0 0 0

0 0 0 0 0
√

6k − 2 0 0

0 0 0 0 0 0
√

7k − 1 0





























,
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A =





























0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0





























. (4.41)

The displacement from the origin of the upper layer corresponds to ∆J = (k + 1)(q + 1).

It is also possible to create a circular depletion in the whole fluid, of size (charge)

∆J = q outside the origin at a distance ∆J = (k − 1)(r − 1) (see figure 7(c)):

B =

r−1
∑

n=0

√

(k − 1)(n + 1) | n+ 1〉〈n | +

N
2
−2
∑

n=r

√

(k − 1)(n + 1 + q) | n+ 1〉〈n |

+
√

(k − 1)q | r〉〈n− 1 | +

√

(
N

2
+ q)(k − 1) | N

2
〉〈N

2
− 1 |

+

N−2
∑

n= N
2

√

(k + 1)(n + 1) −N + (k − 1)q | n+ 1〉〈n |,

A =

N
2
−1
∑

n=0

| n+
N

2
〉〈n | . (4.42)

In matrix representation for N = 6 and q = 2:

B =



















0 0 0 0 0 0
√

(k−1) 0 0 0 0 0

0
√

2(k−1) 0 0 0
√

r(k−1)

0 0
√

(3+r)(k−1) 0 0 0

0 0 0
√

(4+r)k−2−r 0 0

0 0 0 0
√

(5+r)k−1−r 0



















,

A =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



















. (4.43)

In this case, the solution of the Gauss law is obtained in terms of a two-component auxiliary

field ψ, and it holds for rq ≪ N , namely the depletion would move back to the origin in

the scaling limit N → ∞.
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5. Conclusion

In this paper, we have continued the study of the Maxwell-Chern-Simons matrix gauge

theory as an effective theory of quantum Hall states. After providing better forms for

the projection, Am ≈ 0, limiting state degeneracy, we have obtained the semiclassical

ground states of the theory. They correspond to the quantum states found before [19], that

reproduce the Jain composite-fermion construction of phenomenological wave functions.

The density of states in the main Jain series, ν = m/(mk + 1), has been found to be that

of incompressible fluids: this confirms our expectation that the matrix states at g = 0

are not too different from the physical states at g = ∞. The semiclassical approximation

used here is known to be valid in the large N limit for both matrix [22, 21] and real Hall

states [29, 30], in particular for incompressible fluid states.

Outside the main series of hierarchical states, other ground states are possible in the

matrix theory [19], that correspond to generalized Jain constructions [18]. In Jain’s theory,

these generalized states are excluded due to their low (or vanishing) gap. In the semiclassi-

cal analysis of the matrix theory, we have found that the majority of generalized states do

not have piecewise constant density, i.e. are not incompressible fluids: this is an indication

that they may become unstable for finite g > 0 values.

The study of the phase diagram of the matrix theory is clearly necessary to make

better contact between the nice results (g = 0) and the physical regime (g = ∞), upon

varying the potential V = g Tr[X,X]2 . We expect that the relevant incompressible fluid

states have a smooth evolution for g > 0 and we plan to include the quartic potential in

the semiclassical analysis by means of a mean-field approximation.

The explicit semiclassical solutions in this paper can also be useful to study the sym-

metries and algebraic properties of matrix ground states. We would like:

• To make contact with the SU(m) symmetry of the conformal field theories describing

the edge excitations of Jain states [31, 32].

• To find a projection of states more refined than Am ≈ 0, that could discriminate

the hierarchical Jain states from the generalized (unstable) ones. Such an expecta-

tion is based on the general belief that the observed Hall states should be uniquely

characterized by algebraic conditions and gauge invariance, rather than by detailed

dynamics, because they are exceptionally robust and universal.

Acknowledgments

We thank F. Colomo, D. Seminara and G.R. Zemba for interesting discussions. I. D. Ro-

driguez thanks the EC program Alban of Ph-D scholarships for Latin American students.

This work was partially funded by the ESF programme “INSTANS: Interdisciplinary Sta-

tistical and Field Theory Approaches to Nanophysics and Low Dimensional Systems”.

– 31 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
6

A. Gauge invariance of the projection

Here is an explicit proof that the projection (Aab)
mΨ = 0 (cf 2.25) is a gauge invariant

condition on quantum states. Consider the more general relation for m = 2:

AabAa′,b′Ψ
(

A,B
)

= Mbb′
(

A,B
)

VaWa′ . (A.1)

The wave function is assumed to be gauge invariant: Ψ(A,B) = Ψ(UAU †, UBU †). The

form in the r.h.s. is specific of the bush states of section 2, but this is not relevant for

the argument. The matrix Mbb′ vanishes for a = a′, b = b′ because Ψ is assumed to

be one solution of the constraint. In general, there are several terms in the r.h.s. with

that structure, but the matrices Mbb′ should all vanish independently because they are

multiplied by monomials VaWa′ that are all independent [19].

Let us now multiply by unitary matrices and sum over indices on both sides to realize

a gauge transformation of the two A’s:

(

UAU †
)

ab

(

UAU †
)

a′,b′
Ψ
(

A,B
)

= Mebeb′

(

A,B
)

U †
ebb
U †

eb′b′
(UV )a(UW )a′ ,

= Mbb′

(

UAU †, UBU †
)

(UV )a(UW )a′ . (A.2)

The resulting expression of M(UAU †, UBU †)bb′ vanishes whenever M(A,B)bb′ does, i.e.

for b = b′, because both vanish by polynomial identities that do not depend on the specific

vales of the variables. Therefore, a solution of the constraint remains a solution after gauge

transformation.
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